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It was proved that the enthalpy of saturated vapour as a function of temperature has a maxin
all substances. The dependence of the entropy of saturated vapour on temperature can be
nous, has a minimum and a maximum, or has only a maximum. The thermodynamic relation:
derived for the existence of the extremes which enable their computation from the knowledge
pendence of the ideal-gas heat capacity on temperature and an equation of state. A method |
the theorem of corresponding states was proposed for estimating the extremes, and its resu
compared with literature data. The agreement between the literature and estimated tempe
corresponding to the extremes is very good. The procedure proposed can serve for giving pr
to theH—p and T-S diagrams commonly used in applied thermodynamics.
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The curve of saturated vapole., the line separating the gas region from the liqui
vapour region, plays a significant role in the theoretical and applied thermodynam
a gas on compressing (at subcritical temperature) or on cooling crosses this bot
a dramatic change takes place in the system — the liquid phase will appear in a
to the gas phase. This phemomenon is often undesirable. Let us consider an isoe
(i.e. reversible adiabatic) or isoenthalpice(, Joule—Thomson procgssompression or
expansion of the gas. Provided the curve of saturated vapour were crossed durin
processes, a partial condensation of vapour would occur. In this way the dens
medium would be considerably increased, which might result in a compressor t
down. For these reasons the dependences are often studied of enthalpy of s
vapour on pressure.€. on saturated vapour pressure) and the dependences of er
of saturated vapour on condensation temperaturepsgerefs—=.

It was observed that the enthalpy of saturated vapour as a function of saturat
pour pressure shows a maximum. The entropy of saturated vapour as a funcf
temperature may have a minimum and a maximum. It is possible to ask a qu
whether these extremes are typical of some or all the gases. Further we can a:
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thermodynamic data are needed to localize the extremes. As far as it is known
authors, no attention has been paid to these questions in the open literature. The
this work is to answer them, to derive rigorous thermodynamic relations for the po:
of the extremes and to propose a method for estimating these positions.

THEORETICAL

Maximum in the Dependence of Saturated Vapour

The dependence of molar enthalgy, on pressur@ (H—p diagram) is illustrated sche
matically in Fig. 1 at supercriticallf), critical (T3), and two subcritical temperature
(T,, T4, T,> Ty). Line GCL separating the homogeneous region of fluid (liquid or g
from the heterogeneous region in which coexist the gas and the liquid phases
picted in the figure as well. This line consists of two branches — of b@ggtof the
dependence of molar enthalpy of saturated vapour on the saturated vapour press
of branchCL, of the dependence of molar enthalpy of saturated liquid on the satu
vapour pressure. Symb@l denotes the critical point.

In this work we shall discuss the bran@iC. One can observe the maximdon it
which divides this branch into two pa®E andEC. If we stem from the points lying

Fe. 1
Schematical sketch of thd,, = H,,(p) diagram. Symbol (g) denotes the gas region, symbol (I)
liquid region. Solid line without designation separates the region of homogeneous fluid from the
phase region, (g) + (IC is the critical point. Solid lines with designati®pare isotherms, the shap
of isotherms in the two-phase region is denoted by dashHings.the maximum in the dependenc
of enthalpy of saturated vapour on saturated vapour pressure. The meaning oGp&ints L, and
F is explained in the main text. Dot-and-dash line designates isoenthalpic expansion (see mai
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on the curveGE, for instance from the poild, we shall get by isoenthalpic expansic
always into the homogeneous gas phase. If we stem from the points lying on the
EC, for instance from the poid, we may get by isoenthalpic expansion into the tv
phase region. Into the two-phase region, we can get not only by isoenthalpic exp.
of saturated vapour but also by expansion of fluid from the homogeneous regio
instance from the poirf in the figure). It occurs in the cases when molar enthalp
lower than the molar enthalpy at the maximbnthe initial pressure of expanding fluit
is higher than the saturated vapor pressure and the pressure after the expansion
than saturated vapour pressure. The fact that during the isoenthalpic pressur
(throttling), the condensation of gas takes place in the above-mentioned case:
have serious technological consequences. It is therefore evident that the precise |
ation of the maximunfe is important.
The maximum is determined by the condition

=0, 1
S ?

where the subscrifgt and superscript (g) denote that the derivative along the satur
curve and the saturated vapour are concerned, respectively. The molar enthalpy
substance is a function of two variables, temperafuaad pressure, H,, = H.(T,p).
Along the saturation curve, pressure is equal to the saturated vapour presspfe,
which is an increasing function of temperatupé,= p“T), and it holdsH,, =
H,[T.p?(T)]. The condition for extremel) is therefore equivalent to the condition

G0 =0, @)
ndT g
which can be written in the form
) )
e, dg _ [, dg o0 DBH % e
mg 4 (1 anD O+ D it o | )
DdT Q; DdT 03 op G’ P [FITQ;

Wherecgﬂ1 is the isobaric molar heat capacity of gas.
It is advantageous to divid&), into two parts:

CENT.P) = Com (M + CRA(Tp) @

Wherecgm is the ideal-gas molar isobaric heat capacity @g@jis the correction for
non-ideal behaviour of molar isobaric heat capacity (or also molar departure he
pacity’). We shall denote by, the expression
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dg

20
%=~ - 0y ' E#D (5)
G 0OTG
and the conditionl) for the extreme will be rewritten into the equivalent form

ConlM = (M - ©)

The ideal-gas molar heat capacmglm is always positive and finite. Let us investiga
the course of functiom,(T). For an ideal gas we havé§] = 0 and(oH,,/9p) =
With regard to Eq.5), for an ideal gas alsg,(T) = 0. In the vicinity of the triple point,
vapour behaves nearly as ideal gas because its saturated vapour pressure is h
Therefore,@y(T) is small and

CondM > (M) - @

At the critical point (the poin€ in Fig. 1),

e, (P
lim "0 =-c , ®)

p-p, 000 [

holds, where, is the critical pressure. It follows from that
lim @y(T) =0 , ©)
T-T,

whereT, is the critical temperature. Sin@‘p?m('D is finite at all temperatures, in th
vicinity of the critical point holds

o) < @u(T) . (L0

@y(T) is a continuous function of temperature. From inequalii@sugd (0) then fol-
lows that a temperature exists between the triple and critical points at which)E
will be fulfilled and that, at this temperature, the enthalpy of saturated vapour will
a maximum.
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Extremes in the Dependence of Entropy of Saturated Vapour on Temperature

The dependence of molar entrdfyon temperature is illustrated schematically in Fig. 2
supercritical ,), critical (p;) and two subcritical pressureg, @nd p,, p, > p4). Line
GCL separates the homogeneous region of fluid (liquid or gas) from the heteroge
region in which the gas and liquid phases coexist. This line consists of two branc
of branchGC, the dependence of entropy of saturated gas on boiling temperature
branchCL, the dependence of entropy of saturated liquid on boiling temperature
critical point is denoted by the symb@l Let us remark that in the same way as it
common in technical practice, entropy is on the abscissa and temperature on th
nate T-S diagram) even though in this work we study the dependg§peeS,(T).
Analogously to enthalpy, we are interested in bra@ch In Fig. 2a, the dependenc
S, = S(T) is monotonous on this branch, whereas in Fig. 2b, we observe the mini
E, and maximunE,. A qualitative difference exists between the behaviour depicte
Figs 2a and 2b. On isoentropic cooling of a gas behaving according to Fig. 2a, \
into the two-phase region when crossing the @@&. The behaviour of gas in Fig. 2|
is more complex: Let us have a gas whose entropy lies between the values given
maximum and minimum. On isoentropic cooling the gas, we get into the two-g

0+

(9)

Fic. 2

Schematical sketch of = T(S diagram. Symbol (g) denotes the gas region, symbol (I) the lic
region. Solid line without designation separates the region of homogeneous fluid from the two.
region, (g) + (I).C is the critical point. Solid lines with designatippare isobars, the shape of isc
bars in the two-phase region is denoted by dash lina, bntropy of saturated vapour as a functic
of temperature has no extreme.bnE; is the minimum ande, the maximum of dependence o
entropy of saturated vapour on temperature. The meaning of @@jrits], K andL is explained in
the main text. Dot-and-dash line designates isoentropic cooling (see main text)
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region at point. On further cooling, we get again into the gas region at doititwe
cool the gas even more, we get again into the two-phase region aKpoint

Let us investigate the dependence of entropy of saturated vapour on tempe
corresponding to Fig. 2b. At extremEg andE, we have

Bﬁ% =0 . 1)

This equation can be rewritten into the form (we proceed analogously to transfo

Eg. @ to Eq. Q)

)
[0S0 [Hpe0)
0=CQ+TO-- 0O OO0 - 12

P oo 3 [P'TE, 43

If we write the heat capacitgl‘,gﬂ1 in terms of Eqg. 4) and denote by symbagj the
expression

)
35, e
o=-CH-T00 Wﬁz%y a3

we get the condition for extreme equivalent to Bd) (

Con(M =T . 14

Let us discuss now the form of functiggin dependence on temperature. As has b
said, the gas in the vicinity of the triple point behaves nearly as ideal gas. The
of ng and (?7dT), are small here. However, for an ideal gas

[6S,0 R
GO =-—
oopg P

is large and negative. Consequentyis here large and positive and

Con(D < (T (19
applies.

At the critical point (point< in Fig. 2) we get

lim O 0 =-w . (16)
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Therefore the functiops as well asp, has an infinitely high value at the critical poin
In the vicinity of the critical point, the same inequality, relatibf)( therefore holds as
in the vicinity of the triple point.

Unlike with similar inequalities®) and @0) for enthalpy, the existence of extren
does not follow from relationl§) for the temperature interval between the triple a
critical points. The calculations (see next paragraph) of the depenggrceyT) in
terms of the van der Waals and Redlich—-Kwong equations of state, however, in
that within the interval of temperatures investigateg= ¢4(T) has a minimum. If
relation (L5) holds at all temperatures for the given substance, the entropy of satt
vapour as a function of temperature has not any extreme and behaves according to
If in a certain temperature intervagg is lower than the ideal-gas molar isobaric he
capacity, the entropy of saturated vapour has two extremes and behaves as it is ¢
in Fig. 2b.

The described behaviour @§is shown in Fig. 3 for propane and butane. It follo
from the van der Waals equation that both the molar entropy of saturated vap
propane and the molar entropy of saturated vapour of butane have a maximum
minimum in dependence on temperature. On the other hand, the Redlich—Kwong
tion of state predicts the existence of extremes only for butane and not for prop:
is possible to draw the following conclusions from the figure:

1. Functionggis sensitive to the equation of state chosen. Therefore, for its dett
nation, it is necessary to employ an equation of state as accurate as possible.

2. The higher ideal-gas molar isobaric heat capacity has the substance, the
probable is the existence of the extremes. According to the principle of equipartiti
energy, the ideal-gas molar isobaric capacity increases with the number of atc

1501
Ps
pm

Jmot k!

100}

Fic. 3
Dependenceps = f(T,) following from the van
der Waals V) and from the Redlich—-Kwong
(RK) equation of state (solid lines) and de-
pendenceC gm = f(T,) for propane C3) and . . s
butane C,) (dot-and-dash lines) 0.4 0.6 08 T 1.0
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molecule. The existence of extremes is therefore to be expected rather with sub:s
with polyatomic molecules.

3. If the ideal-gas molar isobaric heat capacity for the given substance is too
one of points of intersection of functioﬁ?ﬁm('D andggT) may appear at a temperatu
lower than is the triple-point temperature and will be in this case non-physical. |
occurs, the dependence of entropy of saturated vapour on temperature will have
maximum and no minimum.

Computation ofpq and @s from Equations of State
Let us consider a general equation of state in the form
z=zTd) , @7

wherez = pV,/RT is the compressibility factor artithe molar density. Let us intro
duce some auxiliary quantities which are related to the derivatives and integrals
compressibility factor with respect to the state variablesdd (see ref39):

Qu=z+d 20 18)
G
Qr=z+T 21 (19
G
4pzO
Q=T 0dind (20)
U Io %ﬁg
_ %0
QC_TZIO %5d Ind . (1)

For quantitiesp, andgsthen holds (see réj.

) )
_ | g%dg )[QT dg[Q@_Q(L?) O
(pH——Rg.+2Qu+QC_QdB +RZ9 ﬁ—lg E'M—F:LS (22

0 22909 - Q| O
= REINT L0 g Do T @3
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All the quantities denoted by the superscript (g) are functions of tempefatame
density of saturated vapodf® = d9)(T); the quantities denoted by the superscript
are functions of temperature and density of saturated lidihid d”’(T). The densities
of saturated vapour and liquid for the given temperature can be calculated frc
equation of state as well. The algorithm of their numerical computation for a ge
equation of state is given in Appendix.

RESULTS AND DISCUSSION

We derived the relation for maximum enthalpy of saturated vapour as a functi
temperature, Eq.6}, and the relation for maximum and minimum of entropy of se
rated vapour as a function of temperature, BEd).(From these equations, we can c:
culate the temperatures corresponding to the extremes providing we kno\
temperature dependence of heat capacity of a substance in the ideal-gas sigpte
and@gas functions of temperature.

The dependences of heat capaciﬂ%ﬁ on temperature are known for a great ma
substances, see refThe functionsp, and @ may, in principle, be determined from &
arbitrary equation of state. The problem consists in the fact that these functiol
considerably sensitive to the quality of equation of state as was demonstrated in
This is not surprising. From the equation of state, it is required here to express w
thermodynamic behaviour not only in the gas, but also in the liquid phase, see rel
(22) and @3). Simple equations of state such as the van der Waals or Redlich—K
equations do not evidently meet this requirement. In current literature, the best eq
of state is considered the Bender equ&tianich describes thp—V-Tbehaviour in the
gas and liquid phases with high accuracy. A disadvantage of this equation is th
that the values of its constants are known only for about 30 substances &é9.r&ts
be able to estimate the positions of extremes for a wide range of substances, we |
the procedure based on the theorem of corresponding states.

We shall assume thagi, and @gare universal functions of reduced temperatije;
T/T, and acentric factow. Further we shall assume that their dependences are
linear

(T ) = G(T,) + w(T,) (24

(T, ) = g(T,) + gk (T) @5

To verify these assumptions, we compuigand @sat three reduced temperatures a
plotted them as functions af for the gases for which constants of the Bender equa
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of state are known (argon, krypton, nitrogen, oxygen, carbon monoxide, carbon
ide, water, sulfur hexafluoride, methane, ethane, ethene, propane, propene, pr
cyclopropane, butane, 2-methylpropane, pentane, hexane, heptane, octane, b
toluene, methanol). The values of acentric factor were taken from the monogra
Reidet all’. Figures 4 and 5 show that the relatioPd) (and @5) are satisfactorily
precise.

We computedp, and @5 for a number of reduced temperatures and determi
oV(T,), GP(T,), dO(T,), @(T,) by the least-square method. These quantities are g

160 .
by
Jmort k1
120
80
Fc. 4
Values of@, as functions of acentric fac-
tor w computed in terms of the Bende
equation of state for different substance
40 at three reduced temperaturdsT, = 0.85,

2T,=0.90,3 T, = 0.95. Solid lines corre-
) \ \ spond to linear plot24) with parameters
0 0.2 0.4 o 06 from Table I

Fc. 5
Values of@sas functions of acentric fac-
tor w computed in terms of the Bende
equation of state for different substance
at three reduced temperaturésT, = 0.85,

50 4 2T,=0.90,3T,= 0.95. Solid lines corre-
J ‘ . spond to linear plot25) with parameters
0 0.2 0.4 w 06 from Table |
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in Table I. Using the values in Table | and relatioBd) (and @5), it is possible to
estimatep, andgsfor every substance for which critical temperature and acentric fa
are known.

From the literature dependences of ideal-gas heat capacity on tempenaduusing
Egs 6) and (L4), we have computed the values of reduced temperatures correspc
to the extremes of enthalpy and entropy. The reduced temperatures correspon
the maximum of molar enthalpy of saturated vapour calculated from rela@pasd
(24) are compared in Table Il with the values found in the literature. Deviations
tween the literature reduced temperatures and those estimated by us are typicall
0.01 and the maximum deviation is 0.03, which can be considered a good agre
The differences among the results of different authors are approximately the sarn
remark that the literature values are not the results of direct experiments but of c:

TaBLE |
Parameters of linear regression relatiqfﬁ, qﬁ), q@,tpgl) (3 mol* K™Y in dependence on reduce
temperaturel, = T/T, determined for the estimation @f and @saccording to relations2d) and @5).
Values oftg(_?)(Tr) and qﬁ)(Tr) for T, < 0.65 are not given in this table for at these tempera@{g%s
is always larger tham,

T, o o ¢ S
0.40 147.3 137.7
0.45 122.5 100.5
0.50 97.2 118.2
0.55 86.4 105.8
0.60 79.2 93.2
0.65 74.2 84.3
0.70 15.2 2.7 70.9 78.3
0.75 20.8 6.9 69.8 76.7
0.80 27.3 19.4 70.5 79.6
0.85 35.9 38.2 73.8 88.5
0.90 49.7 66.3 82.3 106.9
0.925 61.3 88.4 91.3 118.6
0.95 80.4 116.1 108.0 1411
0.975 126.4 173.4 150.2 192.7
0.98 144.8 196.8 168.0 214.3
0.99 214.7 293.4 235.5 308.4
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TasLE Il

Literature values of reduced temperatdrf® corresponding to the maximum of enthalpy of sat

rated vapour and its estimatégy‘gsxlaccording to Eqs6) and @4)

Substance Tnax Ref. Treat
Neon 0.743 18 0.750
Argon 0.759 18 0.750
0.743 19
Nitrogen 0.804 18 0.804
0.808 20
0.800 19
Oxygen 0.804 18 0.810
Fluorine 0.771 18 0.805
Chlorine 0.846 18 0.826
Carbon monoxide 0.836 18 0.806
0.784 21
Water 0.777 18 0.808
0.784 22
Carbon dioxide 0.788 18 0.813
0.826 19
Ammonia 0.801 18, 19 0.824
Methane 0.840 18 0.840
0.837 23
0.795 19
0.829 20, 24
Chlorodifluoromethane 0.913 18 0.888
Dichlorodifluoromethane 0.922 18 0.926
Chlorotrifluoromethane 0.910 18 0.904
Ethane 0.867 18, 19 0.880
0.874 24
0.881 25
Ethyne 0.839 19 0.842
1,1-Difluoroethane 0.914 26 0.913
1,1,2,2-Tetrafluoroethane 0.933 27 0.930
2,2-Dichloro-1,1,1-trifluoroethane 0.959 28 0.960
Propane 0.940 18, 19 0.936
0.934 24
0.920 29
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TasLE Il
(Continued
Substance Tnax Ref. Treat
Propene 0.916 29 0.920
Butane 0.962 24 0.968
0.950 29
2-Methylpropane 0.959 24 0.965
0.963 29
2-Methylprop-2-ene 0.960 29 0.957
Octafluorocyclobutane 0.977 18 0.973
Benzene 0.982 18 0.978
Methanol 0.829 18 0.842
0.832 30
a
Hp, Hp, Tz
Ts
Es . Es
/ T2
/
cy / //
E
/ // / / ’
/ / Ti / 4
/ 0] // Ti
0} / 2
7 s / E:
7 - © 4
7/ - 7
e // v @
- il
7~
-
- 0+
- 0+ @ — 9
Sm
Fic. 6

Schematical sketch df,, = H(S,) diagram. Symbol (g) denotes the gas region, symbol (I) the
uid region. Solid line without designation separates the region of homogeneous fluid from the
phase region, (g) + (IC is the critical point. Solid lines with designati®pare isotherms, the shap
of isotherms in the two-phase region is denoted by dash line, tlhe entropy of saturated vapot
as a function of enthalpy of saturated vapour has no extremte. Bn is the minimum andE, the
maximum of dependence of entropy of saturated vapour on its enthalpy
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tions from thep—V—T behaviour. Therefore, it is not possible to say whether they
more accurate than our estimates.

The reduced temperatures corresponding to the minimum and maximum of et
of saturated vapour calculated from relatiohd) (and @5) with the values found in
literature are compared in Table Ill. The same conclusions are valid here as with
in Table Il even if the number of substances, for which extremes were found, is
smaller. It is interesting that in the Hanson tatflesne does not find any minimum fo
butane, 2-methylpropane and butene, and that the temperatures of maximum
differ both from recent resuffdand from our estimates. The estimation method p
posed by us seems to be capable of serving as a test of accuracy of the pu
tables and diagrams.

In addition to theH—p andT-Sdiagrams, one often meets in applied thermodynan
with theH-Sdiagram, too. The results of this work can be applied even to this dia
which is schematically illustrated in Fig. 6. In this figure, three subcritical isothe
and the curve separating the homogeneous and heterogeneous regions are plotte
ogously to thel—Sdiagram, see Fig. 2, this curve may look such as it is outlined in Fi
or such as it is indicated in Fig. 6b. It is possible to show that for the temperat
which H,, = H,(S;) has a maximumi.e., at pointE;, the condition §) is valid. This
maximum occurs with all substances. For the temperatures $her§,(H,,) has two
extremesj.e., the pointsE; andE,, condition (4) holds, the extremes occurring onl
with some substances. With the substances for which reldpmdlds at all tempera-
tures between the triple and critical points, the dependence of entropy of sat
vapour on its enthalpy is monotonous.

TasLE Il

Literature values of reduced temperatures corresponding to the minfrilftrand maximumr "2

of entropy of saturated vapour and their estimatégl, T{T‘S@‘lin terms of relations1¢) and @5)

Substance Tmin TMax Ref. T, Teat
2,2-Dichloro-1,1,1-trifluoroethane 0.631 0.926 28 0.635 0.922
Butane 0.641 0.941 24 0.638 0.938

- 0.908 29
2-Methylpropane 0.662 0.932 24 0.653 0.934
- 0.898 29
2-Methylprop-2-ene - 0.870 29 0.686 0.912
0.613 0.972 18 0.616 0.954
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APPENDIX

Computatlon of Density of Saturated Vapoﬁﬁ) dnd Density of Saturated Liquid
d? from Equations of State

For the chosen temperatuFethe first step of calculation consists in solving the con
tions of phase equilibrium which require the equality of pressures and fugacities ir
the phasesg,e.,

p(g)(T,d(g)) = z(T,d(g)) RTd9 = z(T,d(')) RTdD = p(')(T,d(')) (AD
fO(T,d9) = O(T,dD) , (A2

whered® = 1M9 andd® = 1M!) are the molar densities in the vapour and liquid phe
respectively. This system of equations was solved by the Newton—Raphson mett

[dp ﬁg @ _ (|)_ I) )

% Ad gg Ad () - pfd (A3)
)

[Bfﬁg A — ?g AdO =) - £ (A%

where p, andf, are the approximations of pressures and fugacities, respectively
tained with thd-th approximation of densities in the liquid or gas phase. After cc
sponding rearrangements and on using the dimensio@kgsgntities, this system of
equations can be rearranged into the form

QP A9 — QY AdD = Z0d — 20 (A5)

[Qq eXP(Qe + 2 1)]@ Ad - [Qy exp(Qr +2- 1)) AdV) =

=[dexp(Qe +z- 1]V - [dexp(Qr +z-1)]@ , (A)
whereQy is defined by relation1@) and forQg we have

d
QF:J'O(Z—l)dInd : (A7)
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The first approximation of density of the liquid phase Tat 0.8) was determinec
according to the Rackett equatténThe density in the vapour phase Tat 0.8 as
well) was estimated in terms of the ideal-gas equation of state with the saturated
pressure estimated from the relation p/[f,) = 7(1 — 1T,). At the other temperatures
the results were used obtained in preceding iteration step. Further details can be
in ref8,

As soon as the increments in densities of single phases were sufficiently loy
iteration process was finished, apd and @s were calculated from relation24) and
(23). Usually about 5 to 8 iterations were necessary (on changing reduced tempe
by 0.05).

SYMBOLS
Cpm molar isobaric heat capacity
C8m molar isobaric heat capacity of ideal gas
Cpd molar departure isobaric heat capacity, EJ. (
d molar density
f fugacity
Hm molar enthalpy
p pressure
Pc critical pressure
p? saturated vapour pressure
le QT| QJ| QC see EqS:KS)_(Zl)
Qr see Appendix
R molar gas constant
Sn molar entropy
T temperature
Te critical temperature
Ty reduced temperature
Vm molar volume
z = pVi/RT, compressibility factor
[o% see Eq.%)
@9, o see Eq. 24)
Qs see Eq. 13
@), o) see Eq.25)
W acentric factor
Superscripts
(9) gas phase
0] liquid phase
min minimum
max maximum
Subscripts
o saturated vapour
est estimated
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